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Equations defining in linear approximation the wave motions in an arbitrarily strati- 
fied fluid are derived. Investigation of convergence of wave solutions with approx- 
imations p,,(z) of the mean density profile P,,(Z) shows that uniform convergence of 
p,,(z)to PO(Z) is the sufficient condition of convergence of wave equation solutions. 
The convergence of solutions is uniform on sets of upper bound wave numbers and 

lower bound phase velocities of waves. Examples that show that when the continuous 
function PO(z) is approximated by step-wide functions p,(z) the convergence of solu- 
tions for internal waves is not uniform over the whole set of admissible wave 
numbers and phase velocities of waves. 

1. Unsteady wave motions of a horizontally unbounded layer of perfect incompressible 
fluid whose density in the steady state depends only on the vertical coordinate z is defined 
in linear approximation by the boundary value problem /l/, from which in /1,2/ were derived 
for the vertical velocity componentw the following equation and boundary conditions 

&(&) + (po+&po)Asw=O 
as (- aat a2 -gA.)w=O(z=O), w=O (2=-H); A,=&+$ 

(1.1) 

where p0 = p,,(z) is the fluid density at equilibrium, the z axis is directed verticallyupward, 

H is the fluid depth, and g is the free fall acceleration. 
Elementary modes of motion in the case ofsmallperturbations can be determined by setting 

w = w (2) exp [t (r-x - ot)]; x = (5, y) (1.2) 

where r = (p,v) is the horizontal wave vector and CI is the frequency. The substitution of 
this expression into (1.1) yields the boundary value problem in eigenvalues with parameter 
r2 = j&e + va 

&(I%$) - (Po+ga’&+‘W=O 
dWldz - gu-VW = 0 (z = O), w = 0 (z = _H) 

(1.3) 

whose solution enables us to establish the dispersion formulas c = c(r), c=sT-'for the phase 

velocity of wave propagation (1.2). 

We assume in what follows that the fluid is stably stratified, i.e. p,,(z) is a monotonic- 

ally nonincreasing function and PO (2) > 0. When pO(z) is not everywhere differentiable, it 
has to be assumed that Eq.(1.3) is satisfied for all zC%(-H,O) for which p,,(z) has a deriva- 
tive, and the boundary conditions are to be supplemented by conditions of continuity of func- 
tion W(z) and of total pressure /l/ 

W(z), po(z)[~-gc-2]WEC(--H,0) 

Substitution of the independent variables 

(1.4) 

reduces problem (1.3) with condition (1.4) to the form 
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dSW1 
7- [ 

p2 + g”‘“+$] r*w1= 0 (1-S) 

dW,/ds - gc*p,WI = 0 (s = b), W, = 0 (s = 0) Cl.61 

W,, dW,/ds - gc-*p,W E C (0, b) (1.71 

( Wl (4 = w (2 w Pl (4 = PO (2 (a* b = jH P;’ (5) d5) 

Integrating (1.5) twice fromoto s and taking into account the boundary condition at the 
bottom, we obtain an equation of the Volterra type. The first integration yields 

- =q + f W,(a)[rPplP(u)du + gc-*dpl (a)] dWl(4 
d.3 

0 

(1.8) 

and after second integration we have 

wl~s)=s~ + Sw~(~)(~-a)[~~p'*(~)da + @'dpl(a)I (1.91 
0 

Equations (1.8) and (1.9) retain their meaning also then when function PI(S) is not every- 
where differentiable and has discontinuities. It can be shown that when function W,(S) is 
continuous, the second of 
(1.8) and (1.9) are to be 

2. For the equation 

conditions (1.7) follows from formulas (l.8) and (1.9). Thus Eqs. 
considered only with the first of conditions (1.6). 

W(s)=g(s)+f(s--a)W(a)d@(u) (OQs< 6 
0 

(2.11 

more general than (1.9) we have the following theorem. 

Theorem 1. Let cp(s) be a continuous and @ (s) a continuous from the right functionwith 
limited variation on the segment [O,b& Then Eq.fZ.l) has a unique solution in the class of 
continuous functions on segment fO,b]. 

PrOOf, Proof of such theorem is given in /3/ (see Theorem 11.2.1) for the case when 
(p(S)is a linear function. Since uniqueness of solution of Eq.(2.1) in the case of an arbitr- 
ary continuous function p(s) does not differ from that considered in /3/, we shall. proveonly 
the existence of solution. 

We assume, in conformity with /3/, that in Eq.(2.1) Q(S) is a step function with a fin- 
ite number of discontinuities at Points SE, whereO<sx< . ..<s. ( b. For such function 
a(s) the solution of Eq.(2.1) is of the form 

W(s)= 9 (s) $ 2 w (s,) (s - s*)[Q? ($1) - 0 (Si - 0)l (2.2) 
qi<li 

Taking in equality (2.2) absolute values, we obtain the estimates 

from which we have 

and, consequently, 

Formulas (2.3) and (2.4) yield 

I W&l iGF?r+, for Sk < S\< sk+l (k = 0, i, . . ., n; S,, i= 0, 

Sn+1 = b) 

h+l = hJ + b jil 1 PI,’ (sd 1 AI [@‘I, Fl=N 

(A’ = max 1 ‘p (s) 1, Ai I@1 = 1 Q, (Q) - b, (St - 0) 1 ) 

(2.3) 

Fk+lGNewtbi$lAiL@l) (2.4) 

the estimate of solution of Eq.fZ.1) on segment [0,61 

W(s) I< Nexp fbV [@I) (2.5) 
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where v[@] is the total variation of function @(s)on segment [0,&l. 
Let us now make only the assumption that a(s) is a function of limited variation contin- 

uous on the right. We approximate a(s) by the sequence of step functions Q,(s) (la = 1,2,...) 
and construct respective solutions of w,(s) in the form 

n"n (4 = cp (4 + i(s - e)Wn(s)d%(a) 
0 

(2.6) 

We select functions r.B,,(.$ so that each of. them as a finite number of discontinuities, 
that at discontinuity points values of Co,(s) and (D(s) are the same , and that at every point 
of segment [O,bl functions Q,(s) convexge to @(a). Under these conditions the variations of 
functions Co,(s) and solutions of Eqs.(2.6) are uniformly bounded. 

PW',,l,< VPDI, I W,(s) I\< N erp (bVW'1) (2.7) 

Moreover the sequence W,,(s) (n = 1,2,...) is equicontinuous. Indeed, from (2.6) we have 

Taking in this equality absolute values and evaluating the integrals using the mean 
value theoxem for the Stieltjes integrals, we obtain 

I w,, (s,) - W, (4 I < I cp (s,) - cp (~1) I + I s, - 61 I x I’ [@I h’ erp 0V [@]] (2.8) 

Applying the Arzela principle of compactness , we conclude that there is an infinite seq- 
uence of values of n such that the solution of Eqs.(2.6) uniformly converges to the limitfunc- 
tion W(s). Passing in equality (2.6) to limit with n-t m, we find /3/ that function W(s) 
satisfies Bq.(2.1) and inequality (2.5). The theorem is proved. 

Remark. If the conditions of Theorem 1 are satisfied and function ~(8) has bounded vari- 
ation on segment [O,L], the solution of Eq"(2.1) has a bounded variation on [0, a]. By virtue of 
uniformity estimate (2.8) we have 

Y W] < V NJ] C bV IDI iv exp {bV WI} 

Theorem 2. Let the conditions of Theorem 1 be satisfied, function tp (s) have a bounded 
variation on segment [i), b], and @,(s)be a sequence continuous on the right functions of bound- 
ed variation on [O,b] uniformly converging to m(s). Then solutions of Eqs.(2.6) are also uni- 
formly convergent to the solution of Eq.(2.1). 

Proof, Composing the remainder of Eqs.(2.1) and (2.6) we obtain 

W(a) - W,(S)=(P~(S)+ ~(~-a)[~(~) - ~~(a)l~~~(u) 
(2.9) 

0 

Ip,(s)=j(s-a)W(a)dr~(a~-~~(u~] 
0 

Considering (2.9) as the equation concerning functions U,(s)= W(s)- W,(s) and using 
the estimate (2.5) we obtain 

f U, (4 1-S max IvPR (4 1 erp @VFW) (2.101 

The estimate of 1 I+,,@)( is obtained by integration by parts and, then, the mean value 
theorem, As the result, we have 

I CP,, (4 I Q b { I W (0) I I 0 (0) - @, (0) I + max I * (4 - (2.11) 

% (4 I IV IWl+ max I Wt.9 111 

Owing to the uniform convergence of functions O,,(s) to m(s) the quantities V[cft,j are 
uniformly bounded and max 1 (P,,(S) I+0 as a-.+=. It now follows from inequality (2.10) that 
the solutions of Eqs. (2.6) uniformly converge to the solution of Eq.(2.1). The theorem is 
proved. 

3. The input equation (1.9) is a particular case of the considered above Eq.(2.1) with 
functions 

(P (4 = 
s dWt (0) 
ds’ Q, (s) = r* 4 pla (a) da + gc-*pl (s) 

0 

(3.1) 
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satisfying the conditions of the above proved Theorems 1 and 2. 
It has been thus established that the integral equation (1.9) has a unique continuous 

solution fox which estimate (2.5) is valid. Moreover, solutions of equations oftheform (2.61 
uniformly convergetothe solution of Eq.(1.9), when the density approximation pn(s) (n> 2) 
uniformly converges to function pi(S). 

Then, applying the results of /3/ we formulate the following statement. The derivative 
in the right-hand side when O<s< b of solution of Eq.Cl.9) is defined by equality (1.8) 
(for the continuous on the right function o, (~1). Function dW.IsUds is the bilateral deriva- 
tive of W,(s) at points where-function *_ ~” 

> , I. 
g+(s) is continuous or W,(s)=== 0. 

If function p,(s) uniformly converges to PI(~) on segment [O,b] as n-+oo, then 
the derivatives dW,(s)/& defined by the equalities 

dW, w 
ds = -q$ + f w, (s) d#n (s), 

0 

and (2.6) uniformly converge to the derivative of solution of Eq.(1,9). 
Indeed, by constructing the remainder of equalities (1.8) and (3-Z), we obtain 

Qn (s) = r* a pna (a) da + gc%, (4 s 
D 

Integration by parts the second integral in the right-hand side of formula (3.3) 
application of the mean value theorem yield 

I dW1(4 dW, (8) 

ds --g-- ~maxlWl(s)-W,(s)I~[~~l’nl+ 

also 

(3.2) 

(3.3) 

and 

(3.4) 
ma= I Q, (4 - % (4 ) Imax I WI (4 I -I- r IWIN 

whose right-hand side approaches zero as n-+03. 
In the variance equation 

dW,/ds - gc-zplWl = 0 (s = b) 

and in Eqs.(l.8) and (1.9) appear two parameters: t and C. The estimates (2.10) and (3.4) 
are not uniform in the range of possible variation of parameters r and C. They are uniform 
only for bounded above r and bounded below phase velocity c. Analysis of the asymptotic be- 
havior of function c = c (r) as r+ 00 shows that in a stepwise stratified fluid c =O (r”/*) /4/, 
while in fluid with a continuous mean density profile C = o(r+). 

Example 1. Let the fluid density in the unperturbed state be defined by the law PO(Z) 
= plexp(--kz), where k>>. The analytic solution of the variance equation for this model was 
obtained in /l/ using the "solid cover" approximation 

uj* = gkF[r* + P/4 + n*H-2 (j - 1)P]-' (3.5) 
where oi is the i-th frequency mode for the wavenumber r. We divide the fluid layer -_H< 
a< 0 in n layers of equal thickness hm= Hfn in each of which density is assumed constant 
and equal that of the middle layerpo(z). In this case the variational equation for a multi- 
layer fluid under condition of "solid cover" is of the form 

R, (G) = 0 (3.6) 

where A, is defined by the recurrent formula /4/ 

R ?I+1 =O, R,=1, R,=R,+x IJ.bn (1 + yn) - 4 - PA* (b,* -th*p) %a (3.7) 

h = (gr th r)-‘a*, yn = esp (-kbn), e, = f - yn, bn = th r eth rhn 

Using (3.7) we prove by inducation the validity of formula 

(3.8) 

(m=n+l,n,..., 1) 
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The zeros of N,(6) are obtained analytically. We have 

er+-+ (i-1) (j=2,3,...,n) 

Having determined 6j we obtain exact variational equations for the multilayer model that 
approximate continuous stratification by the exponential one 

(j = 2.3, . . . . a) 

whose expansion in Series in parameter n-1 of function a,,?, yields 

3”ni = gkry - 

1 
+ 0 (n-9 

The first term of this expansion is the same as in (3.5), hence 

lim a,j* = I+ 
W-x) 

The second term of expansion (3.10) approaches zero uniformly with respect to r and i 
as n-t~, while the asymptotic behavior of a,,? and of differs as r-00. 

It follows from (3.5) and (3.9) that 

sjf z gk, atzgrth+ (r>i) 

For the multilayer model the vertical velocity component of the I-th mode at points 
h= -(da)H is determined by formula 

(3.9) 

(3.10) 

and in the case of continous stratification 

WJ (*m) = * [ 
(n-4 

W,(--)exP m2n 1 [ sin x (1 - 1) (+I 

Obviously 

and this passing to limit is not uniform with respect to r and f. 

Example 2. In /4/ for continuous density distribution on discontinuity .ayer formulas 

h (-&<zdO) 
PO(S)= hexp[--(z+&)) (--AZ<--1) 

I 

(3.11) 

hax~[k(H,--l)l (-&<I<--8,) 
a, = 20, H,= 70, H,= 2070 m, k&-H,) = 0.002 

are given, and for stepwise distributions Pn(2) that approximate PO(Z) resultsofcalculations 
of phase velocity propagation are given for long internal waves. Numerical calculations had 
shown /4/ that as P,,(Z) and PO(Z) approach, the phase velocities in the case of multilayer 
model approach the phase velocities of the continuous mode. The convergence rate decreases 
with increasing mode number. 

Table 1 

0.0 i;:: Ef 3.51 3.492 
0.5 

2:o :*z 3-i I:6 
1176 

:*;; 
"2% 

1:699 
2.552 
1.693 

1.35 1.10 0.89 I:26 0.957 1.230 0.946 1.222 

The variational dependence of phase velocity of the tenth internal mode on the wave 
number r are shown above for the same density distribution (the respective column is marked 
by letter c)andseriesmeanings nof several multilayer approximations p,,(s). Multilayer ap- 
proximations are constructed as follows. The layer of discontinuity(--tl,<z< -H,)was divided 
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in (n-2) layers of equal thickness, density p,,(n) in each layer was assumed equal to the dens- 
ity PO(Z) in the_yddle layer. 
wave number is m 

The tabulated valuy in Table 1 are dimensinal: that of the 
and of phase velocities cm.sec _ The multilayer approximation yields in 

this example somewhat higher phase velocities which diminish monotonously as the number of 
layers is increased. The convergence rate decrease with increasing wavenumber r. However 
the multilayer approximation PO(Z) enables the determination of phase velocity of the first 
ten internal modes with an accuracy of 5% in a fairly large range of wave lengths between 3m 
an infinity with a= 102. 

We would also point out that the use of multilayer approximations of density distribution 
provides means for obtaining wave field characteristics in a form convenient for numerical 
computations in the form of recurrent formulas of the type (3.7). 

REFERENCES 

1. KRAUSS v., Internal WAves. Leningrad, GIDROMETEOIZDAT, 1968. 
2. FILLIPS O.M., Dynamics of the Upper Layer of the Ocean. Leningrad, GIDROMETEOIZDAT, 1980. 
3. ATKINSON F., Discrete and Continuous Boundary Value Problems, /Russian translation/. Moscow, 

MIR, 1968. 
4. SANNIKOV V.F. and CHERKESOV L.V., On the development of three-dimensional internal waves 

generated by moving perturbations. In: Hydrophysical Investigations of the Sea. No.3, 
Sevastopol, 1977.; 

Translated by J.J.D. 


